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A suite of seven test cases is proposed for the evaluation of numerical 
methods intended for the solution of the shallow water equations in 
spherical geometry. The shallow water equations exhibit the major 
difficulties associated with the horizontal dynamical aspects of 
atmospheric modeling on the spherical earth. These cases are designed 
for use in the evaluation of numerical methods proposed for climate 
modeling and to identify the potential trade-offs which must always be 
made in numerical modeling. Before a proposed scheme is applied to a 
full baroclinic atmospheric model it must perform well on these 
problems in comparison with other currently accepted numerical 
methods. The cases are presented in order of complexity. They consist 
of advection across the poles, steady state geostrophically balanced 
flow of both global and local scales, forced nonlinear advection of an 
isolated low, zonal f low impinging on an isolated mountain, Rossby- 
Haurwitz waves, and observed atmospheric states. One of the cases 
is also identified as a computer performance]algorithm efficiency 
benchmark for assessing the performance of algorithms adapted to 
massively parallel computers. © 1992 Academic Press, Inc. 

1. INTRODUCTION 

The early days of global atmospheric modeling saw 
significant efforts in adapting then current numerical 
methods to solving fluid flow on the surface of the sphere. A 
large component of this effort was directed toward finite dif- 
ference approaches. The review article by Williamson [31 ] 
discusses the many finite difference approaches that were 
applied to the problem at that time and gives a lengthy list 
of references. The introduction of the spectral transform 
method by Orszag 1-17], and Eliasen et al. [7] made the 
spectral method cost effective in terms of storage and pro- 
cessor time, compared with finite difference approaches. The 
review by Machenhauer [ 15 ] discusses the various applica- 
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tions of the spectral method in detail. The spectral method 
presents a natural solution to problems introduced by 
spherical geometry in part because it provides an isotropic 
representation in spectral space even though the commonly 
adopted underlying Gaussian grid does not. The spectral 
transform method is widely accepted as the basis of opera- 
tional numerical weather prediction and global climate 
models. Although not universally adopted the method has 
become the rule rather than the exception. As a result little 
effort has been directed in the last decade toward developing 
alternative methods of approximation for global atmo- 
spheric models. 

Currently there is renewed interest in alternative methods 
for a variety of reasons. The European Centre for Medium 
Range Weather Forecasts (ECMWF) has reported [6] that 
at resolutions greater than those currently used in opera- 
tional numerical forecast models the computational cost of 
the Legendre transform associated with the spectral method 
will become a significant fraction of the total cost of the 
model. Thus other methods are likely to become economi- 
cally competitive. The Spectral representation contributes to 
unphysical structures in the predicted fields such as negative 
water vapor [22]. Traditional finite difference approxima- 
tions also suffer from this defect. However, recently shape 
preserving and essentially non-oscillatory schemes have 
been developed to address this deficiency. Spectral models 
require a global domain and have thus been based on a nor- 
malized vertical coordinate such as pressure divided by sur- 
face pressure. Over steep mountains the horizontal pressure 
gradient force in such systems is a small difference of two 
large terms and difficult to approximate accurately. Mesh 
refinement near mountains, or admittance of explicit lateral 
boundaries where mountains can penetrate the grid, appear 
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as potential alternatives. The spectral method also presents 
problems with efficient implementation on some of the new 
computer architectures although these are not necessarily 
unique to the spectral method. The global communication 
required by the spectral transform may be difficult to 
achieve efficiently on massively parallel computers with dis- 
tributed memory. With grid point based schemes a similar 
communication problem may arise, however, associated 
with the elliptic problem introduced by a semi-implicit time 
stepping algorithm. 

The renewed interest in algorithm development has led to 
the need to define standard test cases with which potential 
schemes may be compared. Strict comparisons based on 
such test cases will aid in rationally choosing the com- 
promises which must be made in numerical modeling. We 
present a suite of test cases in this report for numerical 
approximations to the shallow water equations in spherical 
geometry. The shallow water equations on a rotating sphere 
serve as a primary test problem for numerical methods used 
in modeling global atmospheric flows. They describe the 
behavior of a shallow homogeneous incompressible and 
inviscid fluid layer. They present the major difficulties found 
in the horizontal aspects of three-dimensional global 
atmospheric modeling. Thus they provide a first test to weed 
out potentially non-competitive schemes without the effort 
of building a complete model. However, because they do not 
represent the complete atmospheric system, the shallow 
water equations are only a first test. Ultimately schemes 
which look attractive based on these tests must be applied 
to the complete baroclinic problem. We hope that the 
existence of a standard test set for the shallow water 
equations will encourage the continued exploration of alter- 
native numerical methods and provide the community with 
a mechanism for judging the relative merits of numerical 
schemes and parallel computers for atmospheric flow 
calculations. 

We present here a suite of seven test cases in increasing 
order of complexity. Several analytic treatments included 
in the suite provide objective standards for judging the 
accuracy of numerical schemes and provide quick checks on 
the validity of code. The first test consists of advection of a 
structure of compact support by a specified wind field 
corresponding to solid body rotation whose axis is not 
necessarily coincident with that of the rotation of the earth. 
As such this case deals with only a subset of the shallow 
water equations, namely the continuity equation, but 
concentrates on a scheme's ability to deal with the poles 
of the spherical coordinate system. 

The second and third cases present steady state, nonlinear 
zonal geostrophic flow. They are a global form with the 
wind corresponding to solid body rotation and a local form 
where the wind field has compact support. In both cases the 
spherical coordinate poles are not necessarily coincident 
with the earth's rotation axis. As with the first case these test 

a scheme's ability to handle the poles, but in addition, 
nonlinearities can come into play. 

The succeeding test cases are of increasing complexity 
and realism, exercising the more subtle aspects of 
atmospheric flows. One case uses an analytic forcing func- 
tion to drive a low around the sphere. The case mimics the 
more complicated local structures observed in the atmos- 
phere. Another case consists of zonal flow impinging on an 
isolated mountain in which a downstream wavetrain is set 
up. A Rossby-Haurwitz wave case is also included. Analytic 
solutions for the Rossby-Haurwitz wave in the shallow 
water context are not known but this wave has become a 
standard test case in meteorology. A reference solution is 
provided by a high resolution spectral transform model 
integration. Finally, actual weather patterns are presented 
for initial conditions. Since they obviously have no analytic 
solution a reference solution is provided again by a high 
resolution spectral transform model run. As mentioned 
above, analytic solutions for the last three cases are not 
known. Reference solutions will be provided by a high 
resolution spectral transform model. For it to be accepted it 
must be duplicated by a high resolution solution provided 
by at least one other different method. 

With each test case we ask for a variety of specific 
measures of the error of the numerical solution. Just as there 
is no single ideal test case, there is no single measure that 
determines the quality of a scheme for atmospheric 
modeling. We include a variety of test cases and error 
measures to provide as much information as possible to 
would-be users so they can evaluate the various trade-offs 
involved with the schemes. 

The second test in the suite is also proposed as a 
performance benchmarking problem. Such benchmarking is 
particularly important since the efficiency of schemes must 
be evaluated considering the computing environment for 
which they are designed. 

As an initial basis of comparison we provide in a com- 
panion report [13], solutions to these problems from a 
spectral transform approximation at resolutions currently 
used in atmospheric models. The code for this spectral 
model is documented in Hack and Jakob [8] which also 
provides details on how- to obtain copies of this code. 
Spectral models are widely but not universally adopted in 
climate modeling and numerical weather prediction. We 
encourage centers currently using other methods to run 
these tests with their schemes and to submit the results for 
comparison. To facilitate comparison of schemes, a machine 
readable copy of standard FORTRAN routines which 
calculate the initial conditions and analytic or reference 
solutions is available from netlib@ornl.gov. A file sum- 
marizing performance statistics contributed by members of 
the community will also be maintained. In addition a list of 
corrections to this paper will be maintained along with a 
bibliography of reports presenting results of tests of numeri- 
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cal schemes based on this test suite and any modifications to 
the test suite generally agreed upon by the community. 
Please submit additional performance data and references 
for the bibliography as they become available to John 
Drake (bbd@ornl.gov). 

2. T H E  S H A L L O W  W A T E R  E Q U A T I O N S  O N  A S P H E R E  

For convenience, we summarize many forms in which the 
shallow water equations can be written. The reader is 
referred to standard texts such as Holton [ 11 ] and Haltiner 
and Williams [9-1 for more general development. 

2.1. Flux Form 

The shallow water equations on a rotating sphere can be 
written in flux form as 

t?h*v + V. (vh*v) = - f l~  x h*v - gh* Vh 
~t 

(1) 

and 

Oh* 
- -  + V -  ( h ' v )  -- 0, (2 )  
~t 

where h* is the depth of the fluid and h is the height of the 
free surface above a reference sphere (sea level). If h= denotes 
the height of the underlying mountains, h = h*+ h=. The 
horizontal (on the sphere) vector velocity is denoted v with 
components u and v in the longitudinal (2) and latitudinal 
(0) directions, respectively. The V operator is the spherical 
horizontal gradient operator given by 

v( ) -  a c o s ~  0,~ ( )+ ( ) (3) 

and V. is the spherical horizontal divergence operator given 
by 

Equation (1) in terms of spherical components is then 

Oh*u+ V . ( h , u v ) _ ( f  +i tan O)h*v 
Ot 

gh* Oh 
+ - -  =0, (6) 

a cos 00)~ 

dh*v_~ + V - . ( h * v v ) + ( f + i t a n 0 ) h * u  

gh* 
+ - -  = 0. (7) 

a 00 

2.2. Advective Form 

The advective form of the horizontal momentum and 
mass continuity equations can be written 

dv 
- -  = - f ~  x v -  g V h  ( 8 )  
dt 

and 

dh* 
- - + h * V . v = O ,  (9) 
dt 

where the substantial derivative is given by 

d 0 
dS( )--~5() + (v.V)(). (10) 

The equations for the spherical components are 

( ) _  - ~ + v . V u -  f + U t a n  0 a  v+ a cosg 0020h 0, (11) 

Ov ( ) g Oh 
~-~+v.Vv+ f+Utan0a  U+a~-~=0, (12) 

and 

1 [t?~_i + 0(v c°s 0) ] 
V .  v - . ( 4 )  

a cos 0 00 

The longitudinal, latitudinal, and outward radial unit vec- 
tors are i, ], and 1~, respectively, f i s  the Coriolis parameter, 
g is the gravitational constant and a is the radius of the 
earth. The Coriolis parameter is given by 2f2 sin 0, where O 
is the rotation rate of the earth. 

The equations for the spherical components can be 
derived by writing v = ul + vj and using 

dh*v A dh*u ^ dh*v di , d] 
dt = ' - ~  + ] --~- + h*u -~t + h v --~. (5) 

Oh* h* (~_~ ~vcos 
0---Z + v "vh* ÷ a cos 0 ÷ - - - - ~ 0 )  = 0 ' 0 0  (13) 

2.3. Vorticity Divergence Form 

The horizontal momentum can also be specified in terms 
of relative vorticity, 

( - ~ . ( V x v ) ,  (14) 

and horizontal divergence, 

3-=V.v. (15) 
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The curl operator is given by 

~ - ( V x v ) - 1  I63~2 63uc°sO] 
a cos 0 80 

Using the vector identity 

(16) 

(17) 

2.4. Bounded Differential Expression Form 

The spherical vector component forms of the equations 
contain individual unbounded differential expressions 
approaching the poles. Swarztrauber [3] has developed a 
form for the equations containing only bounded differential 
expressions 

8u v au u av g Oh 
at u8 - + +fv  (26) aS-0 aS-0 acos 0 632 

the horizontal momentum equation becomes 

& =  - ( { + f )  1~ x v - V  gh+ , 

or in spherical component form, 

(18) 

E 12 1 ~ = ( ( + f )  v -  gh+~(u +v 2) (19) 
a cos 0 632 

& = - ( ~ + f ) U - a ~ -  0 gh+~(u2+v2) . (20) 

8v uau roy g0h (27) 
at u( a80 ado fu -  a80" 

2.5. Stream Function, Velocity Potential Form 

The spherical velocity components can be avoided by the 
introduction of a horizontal stream function, ~, and 
velocity potential, Z. The equation relating horizontal 
velocity and these two scalar quantities is 

v = ~ x VO + VZ. (28) 

Applying the curl and divergence operators [ .  V x ( ) and 
V- ( ) to the momentum equation yields 

~'c3 
---z~ = - V .  (( + f )  v (21) 
at 

- -=  63(~ at ~ ' V x ( ~  + f )  v - V 2 (  gh+v 'v  - 2 -  ) , (22) 

The spherical wind components are related to the stream 
function and velocity potential by 

1 aO 1 OZ 
u=  ~ - -  (29) 

aa0  acos082  

1 63~ 1 aZ 
v ÷ (30) 

a c o s 0 a 2  a630" 

or in terms of spherical components, 

a~ 1 a 
at a cos 0 632 [(( + f )  u] 

1 a 
acosOaO[(~+f)vcosO] (23) 

633 1 a 
a t - a c o s  0 a2 [(( + f )  v] 

1 a 
a cos 0 a0 

[ ( ( +  f )  u cos O] 

-VZ lgh+~(u2  +v2) ], (24) 

where 

1 a2() 1 a (cos0a(!) (25) 
V2( ) -- a 2 cos 2 0 632 2 q a 2 cos 0 630 \ 630 " 

The application of the curl and divergence operators to 
(29) and (30) gives the absolute vorticity 

and divergence 

r/=-{ + f  =V20 + f  (31) 

6 =V2z. (32) 

In terms of the stream function and velocity potential the 
horizontal momentum and mass continuity equations can 
be written [16] 

~ t + V .  (q V ) 0 -  J(t/, ~k) = 0, (33) 

86 
63-7 - V- (q V~) - J(t/, Z) = - V 2 ( K +  gh), (34) 

Oh* 
at + v .  (h* Vz) - J(h*, ~) = O. (35) 
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In spherical coordinates the Jacobian operator is defined by where 

j(~,fl)=a2 1 (~o~[3 ~g[3) 
cos 20 ~-2¢30 0 0 ~  " (36) 

d 0 U ~  V ?  

&=~7+m-7~x+my @" 
(45) 

Here K is the kinetic energy ½(u 2 + v 2) and can be expressed 
in terms of stream function and velocity potential as 

K =  ½[V-(tp V 0 ) -  ~p V2~p +V.  (g V~()-Z V2Z] + J(0, Z)- 

(37) 

According to Gauss's theorem, the J and V. operators, 
Jacobian and divergence, have the integral properties 

; f  A J(a' fl) dA = ;c~ ~s dS (38) 

and 

f;A V. (o¢ Vfl) dA = fc ~ Off Nds, (39) 

The continuity equation is 

dh* h* - - +  
dt mxmy 

[~-~(myU)+; (mxV)]  =0. (46) 

Note, for spherical coordinates, 

x = 2, y = 0 (47) 

mx= a cos O, my = a (48) 

dx d2 
u = m x --~ = a cos 0 -~ (49) 

@ dO 
v = my -~ = a --~. (50) 

Commonly used map projections are north and south polar 
stereographic 

where O/Os is the derivative along C and O/On is the 
derivative normal to the curve. 

1 4a 2 
mx = my = ~ (1 + sin O) -- x2 + y2 + 4a 2 (51) 

2.6. General Orthogonal Coordinates 

The general orthogonal coordinate form is useful when 
considering approximations based on various map projec- 
tions. Let (x, y) be the orthogonal coordinates and mx and 
my be the metric coefficients so the distance increment (dl) 
satisfies 

(dl) 2 = mZx d x  2 "~- m} dy 2. (40) 

The velocity vector v has components 

dx 
U=mx7 (41) 

and Mercator's 

m x = my = cos  0. (52)  

All major map projections are described from a 
geographical point of view by Steers [25]. Saucier [-24] 
discusses the common projections used in meteorology. 
More recently Pearson [19] has summarized the field. 

2.7. Three-Dimensional, Constrained Form 

C6t6 [-4] developed a three-dimensional vector form for 
the horizontal momentum equations using the undeter- 
mined Lagrange multiplier method to constrain the motion 
to be on the surface of the sphere, 

dV dy (42) - -  = (53) V = my --~ dt F + I~ r, 

in the x and y directions, respectively. The equations of 
motion are 

dU [ 1 (vOmy uOmx)q V+ g.g_Oh 
dt - L f +  - - =  mxmy \ OX Oy ]J mx Ox 0 (43) 

~ + I f +  1 (vOmy u O m x ~ ] u +  g, Oh 
mxmy Ox - Oy JJ my oy=O'  (44) 

where 

d r  
v = - -  (54)  

dt 

is the three-dimensional velocity vector in a rotating frame, 

F = - f r  x V - g V h  (55) 

581/102/1-15 
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and # is the Lagrange multiplier determined by requiring 
that 

r - r  = a 2 (56) 

be satisfied for all time; r is the position vector. Evaluation 
of the Lagrange multiplier for the continuous equations 
gives /~ = - V - V  and leads to the usual Eulerian form. 
There are advantages, however, in determining the 
Lagrange multiplier after the time discretization [ 5 ]. In this 
approach the three-dimensional equation is solved rather 
than the usual two-dimensional and/~r  represents a sup- 
plementary force which keeps fluid elements on the surface 
of the sphere. After discretization, however, the calculation 
can be carried out in two-dimensional space. 

2.8. Cartesian Form 

It may be advantageous to evaluate the surface 
derivatives using a Cartesian form. By extending the surface 
vector v = (u, v) T to the three-dimensional v~ = (u, v, w) T the 
shallow water equations can be embedded in the system 

0V s 
~-+  S(Vs) v , + a + l I + 6 = 0 ,  (57) 

where 

S(v,) = 

'Ou 1 Ou 

8r a ~0 

8v 1 f o r  "~ 
-gr at ,~ +w ) 
 wl(ow) 

acosO ~ - v s i n O + w c ° s O  

) acos0  ~-~ + u sin 0 

- u cos 0 
a cos 0 

(58) 

If we define V = (X, Y, Z )  T as the velocity in Cartesian 
coordinates (x, y, z) then 

where 

L = Q V ,  (62) 

r is the radial coordinate (r = a at the earth's surface), and t 0) where 
a = 0 , (59) 

U 2 + U . . . ~  2 

a ~ ( _g oh\ 
a cos 0 3 2 \  

and / 

g Oh | °: ] ,60  

6 = . (61) 

0) 
Q =  - s i n 0 c o s ) ,  - s i n 0 s i n 2  cos . 

cos 0 cos 2 cos 0 sin 2 sin 

(63) 

Substituting (62) into (57) and multiplying by QT we obtain 
the Cartesian form 

0V 
- - +  CV + QT(Gt + [~ + 6) ----- 0. (64) 
0t 

In this equation 

C = QTS(L) Q = 

'0X gX 0X ~ 

Ox Oy Oz 

OY OY OY' 

0x 0y 0z ' 

0Z 0Z 0Z 

Ox @ Oz 

(65) 

X(X2 + y2  + Z 2 ) ~  

1 |y(X2+ r2+z2)}, QT~t = ~-~ 

\ z (X2+ r 2 + z ~ ) /  
(66) 

2oz(; z 
QTfi = 7 -  0 - x Y , 

y x o / \ z /  

(67) 

QT~ ----- p Vch, (68) 

a2 -- x -- x y  -- XZ ) 
g a 2 y2 P = ~  [ - x y  - - y z  

\ - -  x z  - y z  a 2 - -  Z 2 

(69) 

(0h 0h 0h)T 
v~h = \o~ Oy' Yz/ • (70) 

Similarly, the continuity equation in Cartesian form is 

3h* 
8t + V T p V e h *  + h* V~'V = O" (71) 
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The matrix P projects an arbitrary Cartesian vector onto a 
plane that is tangent to the sphere at the point (x, y, z). For 
methods of evaluating the C matrix and the Cartesian 
gradient the reader is referred to [-26 ]. 

3. TEST CASES 

The following test cases are proposed to evaluate 
and compare numerical schemes intended for g lobal  
atmospheric models. The cases in the series increase in com- 
plexity. We suggest the tests be run in order without 
proceeding to the next until the numerical scheme is 
reasonably successful on the current one. For  some 
schemes, some of the requested parameter settings define tri- 
vial tests and realistically provide only a superficial check of 
the code rather than a useful measure of the quality of the 
scheme. These situations should be identified so that no 
false conclusions are drawn. Ideally the full set should be 
reported for each proposed scheme and trivial cases for that 
scheme acknowledged. 

In the test cases that contain significant energy or 
enstropy cascade into the model truncation ranges, the 
addition of an explicit diffusion term may be desirable and 
may lead to improvement in some of the error measures. In 
fact, in practical applications in atmospheric modeling such 
terms are almost always included. Therefore, they should be 
included in cases 5 through 7 of this suite with the form and 
coefficients chosen to be appropriate to the scheme being 
tested. 

Case 2 also provides a benchmark for timing implementa- 
tions on various machines. It exercises the complete set of 
equations and, since it is a steady state solution, no extra 
computations are required during the integration. For  
timing purposes an integration should be performed with 
all the extra output processes removed after it has been 
demonstrated that the scheme and codes solve the problem 
properly. 

These tests represent necessary conditions only; i.e., any 
scheme must do well in these tests compared to currently 
accepted schemes. Any scheme that performs well in these 
tests can then be incorporated in a global baroclinic general 
circulation model with state-of-the-art physics and more 
definitive tests can be conducted. 

Parameters relevant to the earth and all test cases are 

a = 6.37122 x 106 m 

£2 = 7.292 x 10 -5 s -1 

g = 9.80616 m s -2. 

Unless specifically mentioned, the height of the mountains is 
taken to be zero (hs = 0) and h* = h. 

1. Advection of Cosine Bell over the Pole 

This is the only case of the suite that does not deal with 
the complete shallow water equations. It tests the advective 
component in isolation. Many shallow water codes can be 
easily changed for this test by overwriting the predicted 
wind field every time step with the analytically specified 
advecting wind. Since this wind field is nondivergent the 
equation for the height of the free surface reduces to the 
advection equation. For  some methods, semi-implicit for 
example, some additional changes may be required to 
isolate the height forecast from the wind forecast. 

A cosine bell is advected once around the sphere. Several 
orientations of the advecting wind are specified including 
around the equator, directly over the poles and minor shifts 
from these two orientations to avoid symmetries. This case 
is specified in eqs. (4.2)-(4.5) of Williamson and Rasch 
]-34]. The advecting wind is given by 

u = u0(cos 0 cos a + sin 0 cos )~ sin a) (75) 

v = -Uo sin 2 sin ~. (76) 

In terms of stream function and velocity potential this is 

~, = -aUo(sin 0 cos ct - cos 2 cos 0 sin ct) (77) 

Z=0 .  (78) 

The parameter ~ is the angle between the axis of solid body 
rotation and the polar axis of the spherical coordinate 
system. Tests should be run with c~ = 0.0, 0.05, 7r/2-  0.05, 
and 7z/2. 

The initial cosine bell test pattern that is to be advected 
is given by 

h(2,0)={(oho/2)(l +cos(rcr/R)) if r < R  
if r >~ R, 

(79) 

where ho = 1000 m and r is the great circle distance between 
(2, 0) and the center, initially taken as (2c, 0~) = (3z¢/2, 0): 

r=aarccosEsinOcsinO+cosOccosOcos(2-2c)]. (80) 

The radius R = a/3 and the advecting wind velocity u0 = 
27za/(12 days), which is equivalent to about 40 m/s. This 
solution translates without any change of shape. 

(72) Error measures. Plots of contour lines (interval = 100 m 
(73) with zero contour) on orthographic projection with 
(74) perspective centered over the true solution. True solution 

should also be contoured on the same plot with dashes but 
without the zero contour. Plot after one rotation. Contour 
maps of the error should also be provided after one rotation. 

Some global measures of the error are also desirable. 
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Define I to be a discrete approximation to the global The velocityfieldfromEqs. (4.1)-(4.2) ofWilliamson and 
integral Browning [32] is initially (and for all time) 

1 ~2~ ~/2 h(i.,O)cosOdOdi. (81) 

which is consistent with the numerical approximations 
being tested; for example, Gaussian quadrature would be 
selected for the spectral transform method. The following 
normalized global errors should be graphed as a function of 
time sampled each time step where hr is the true solution. 

u = u0(cos 0 cos e + cos 2 sin 0 sin a) (90) 

v = - u 0  sin )~ sin c~. (91) 

In this report the angle e has the opposite sign as that in 
Williamson and Browning [32] but the.same sign as that in 
Williamson and Rasch [34]. In terms of stream function 
and velocity potential, the velocity field is 

I,(h) = I[Ih(2, 0 ) -  ha-(2, 0)1] 
t[IhT(X, 0)1] 

{I[(h(2, 0) - hv()~, 0)) 2 ] } 1/2 

12(h) = {I[hT(~, 0)2]} 1/2 

(82) 

(83) 

l~(h)=max~,nro Ih(A, 0 ) -hv (2 ,  0)l (84) 
max..x.0 Ih-r(2, 0)( 

= -au0(sin 0 cos ~ - cos 2 cos 0 sin e) (92) 

Z=0.  (93) 

The absolute vorticity is 

t /= (~-~ + 2f2) ( - c o s  2 cos 0 sin ~ + sin 0 cos ~). (94) 

In addition, the normalized mean, variance, minimum, and 
maximum values should be graphed as a function of time 
sampled each time step. Let h denote the mean 

h= I [h (2 ,  0)3 (85) 

The analytic h field is given by 

gh= gho-(af2uo +U-~2 ) 

x ( - c o s  2 cos 0 sin ~ + sin 0 cos 7)2. (95) 

then the normalized mean and variance are written 

M = (h - hT)/ho (86)  

V = { I [ ( h  - h)  2 ] - I [ ( h x  - -  l IT)  2"] } / I [ ( h  0 - -  ]~o) 2"] (87)  

and the minimum and maximum are 

hma x = (max h(2, 0) - m a x  hT()C , O ) ) / A h  ( 8 8 )  
all )., 0 all 2, 0 

h m i  n = (min h(2, 0 ) -  rain hT(~ , O))/z~h, (89) 
all 2, 0 all 2, 0 

where Ah is the difference between the maximum and mini- 
mum values of the true solution initially and h~- and ho are 
the true solution and initial field, respectively. 

2. Global Steady State Nonlinear Zonal Geostrophic Flow 

This case is a steady state solution to the non-linear 
shallow water equations. It consists of solid body rotation 
or zonal flow with the corresponding geostrophic height 
field. The Coriolis parameter is a function of latitude and 
longitude so the flow can be specified with the spherical 
coordinate poles not necessarily coincident with earth's 
rotation axis. Again several orientations are specified. 

It may be desirable to modify the initial wind and height 
fields so they satisfy a discrete nonlinear geostrophic rela- 
tionship consistent with the scheme being tested. This could 
prevent spurious gravity waves from contaminating the 
numerical solution. The discrete balance may also be used 
to define the true solution for the purposes of calculating the 
error diagnostics. These changes are allowed but must be 
reported with the results along with the error comparing the 
discrete initial state to the analytic. The Coriolis parameter 
associated with this solution is 

f = 20 ( -cos  )~ cos O sin c~ + sin O cos a). (96) 

The parameter values used should be Uo = 27za/(12 days) as 
in case 1 and gho = 2.94 x 104 m2/s 2. 

Tests should be run with ~ = 0.0, 0.05, 1t/2 - 0.05, and n/2. 
Error measures. Contour maps of h field and error after 

five days on a stereographic projection centered over the 
axis of the flow. Graphs of the l~, 12, and l~ errors of h and 
v versus time. The h errors are computed as in (82)-(84). 
The v errors are given by 

I I [ { ( U ( / ~ ,  0 )  - -  U T ( ~  , 0 ) )  2 ] 
-~ (U(/~, 0 )  - -  UT(/~ , 0 ) )  2 } 1/2]j 

ta(V)- rE{UT(L0)2+v+(,~,0)2} 1/2] (97) 
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{I[-(b/(2, 0) - -  UT(2 , 0)) 2 ] 
"dff (/)(4, 0)--UT(2 , 0))2]} 1/2 

12(V) = {/[.UT(2 ' 0)2 q_ /)T(,~, 0)2] }1/2 (98) 

I maxan~ 0 E{(u(2, 0)--b/T(/~ , 0))2~ 
+'(v(;~, o)- ~(2, 0))~}1/2]J 

l~(v) = maxa.a0 [{Ur(Z, 0) 2 + VT(2, 0)2}1/2] . (99) 

In addition to these graphs a mesh convergence study 
should be performed. The 12(h) and 12(v) errors at five days 
for three different resolutions should be shown and a rate of 
convergence for the method estimated. 

has compact support. The stream function and velocity 
potential are given by 

Oe __ Ob fx  
O'(x)  = - -a  uoe 4/xe e-X"/x '(~-X')dx ', (104) 

X e ~Xe 

and 

z'=O. (lo5) 

Following (5.13) and (5.15) of [34] and equations for u and 
v derived in a similar manner to (5.16) and (5.17) of [34] 
(with hA = 0 and OA = ~) the rotated form can be written 

3. Steady State Nonlinear Zonal  Geostrophic Flow with 
Compact Support 

This case is similar to the previous one except that the 
wind field is nonzero in a limited region. It was introduced 
by Browning et al. [3]. In the editorial process for that 
paper some terms were dropped from the last equation in 
the first column on page 1068. It should read 

= u(cos ~ cos ;~ sin 2 sin 0 

- cos 2 sin ~ sin ~ + sin e sin 2 cos ~). (100) 

v cos 0 = - u '  sin e sin 4' 

u cos 2 = v sin 0 sin 2 + u' cos 2' 

with the coordinates related by 

sin 0' = sin 0 cos e - cos 0 cos 2 sin 

sin 4' cos 0' = sin 2 cos 0. 

The quadrant in 

(106) 

(!07) 

(lo8) 

(109) 

which 2' falls can be determined by 
ensuring that 

This case is easiest to write first in a coordinate system 
(2', 0') whose poles are coincident with the Earth's rotation 
axis, followed by a rotation through an angle ~ to the system 
(2, 0) in which the jet is not parallel to the coordinate lines. 
This is essentially the process used to derive the equations 
above for solid body rotat ion,  however, in the case with 
compact support it is more difficult to write the equations in 
closed form in the (2, 0) system. Therefore, we present the 
equations in a series of steps. The velocity components 
(u', v') in the (2', 0') system are given by 

u ' = u o b ( x )  b ( x e - x )  e 4/~ (lOl) 

v'=0, (102) 

where 

sin 0 = sin 0' cos e + cos 0' sin e cos 2' (110) 

is also satisfied. Equation (110) may suffer from precision 
problems because of the nesting of trigonometric and 
inverse trigonometric functions. A more stable test is that 
the principal value (2p) is used for 2' when 

cos e cos 2 cos 0 + sin c~ sin 0 >~ 0, (111 ) 

t otherwise 2 ' =  z - 2 p .  This relationship can be obtained 
by transforming to Cartesian coordinates, rotating the 
Cartesian coordinates, and noting that the principal 
value is needed in the primed system when x'~> 0. (The x 
and z coordinates are chosen to go through (2, 0) = (0, 0) 
and (0, ~/2), respectively, and the y coordinate can be 
ignored.) The Coriolis parameter in the two systems is 

and 

[0  if x ~ 0  
b(x)  

e -x-  if 0 < x ,  
1 

x = xe(O' - G)(Oe -- Ob) 1 (lO3) 

The parameters are Uo = 2~ra/(12 days), 0 b = -rr/6,  O e = rc/2, 
and x~ = 0.3. Note that u' is infinitely differentiable and 

f = 2 1 2  sin 0' (112) 

f = 2 f 2 ( - c o s 2 c o s O s i n e + s i n O c o s o  O. (113) 

For  a steady state solution h' must satisfy 

(u') 2 tan O' g ~3h' 
a + a ~--07+fu'=0" (114) 

For  the general case the height is difficult to obtain 
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analytically. Therefore, we integrate the form in the prime 
system 

tiff tan 0 g Oh 
(121) 

h = ho - - 2~ sin ~ q u'(z) dz 
g - ~/2 

(115) I 0fcos  1 
Fh=-dT+acos-----0 ~--£+ 00 " 

(122) 

numerically to obtain a highly accurate h. The background 
height, ho, is given by gho = 2.94 x 104 m2/s 2 as in case 2 and 
the limit 0' is related to (2, 0), the point at which the 
geopotential is desired, by (108). 

Tests should be run with e = 0.0, and n/3. 

Error measures. Contour maps of field and error after 
five days on an orthographic projection centered on 
(3n/2, n/4). Graphs of the ll, 12, and loo errors ofh  and v as 
functions of time. In addition to these graphs a mesh con- 
vergence study should be performed. The 12(h) and 12(v) 
errors at five days for three different resolutions should be 
shown for the e = n/3 case and a rate of convergence for the 
method estimated. 

4. Forced Nonlinear System with a Translating Low 

The nonlinear steady state tests presented in the previous 
sections are the simplest measure of the adequacy of a par- 
ticular numerical method. The performance of a scheme on 
the nonlinear unsteady equations is also desirable, but 
analytic solutions are all but nonexistent. Thus, we take the 
approach followed by Browning et al. [3]  who choose a 
flow fi, g, and ~ that is similar in structure to flows observed 
in the atmosphere. This flow is a solution to the forced 
shallow water system which can be written in advective 
form as 

The flow is given by 

~0  ~ = ~ - - -  (123) 
a 

a cos 0 ' 

ga = ga + fq), 

(124) 

(125) 

where 

t7 = u o sin14(20), (126) 

0 
g f ~ = g h o - f  [a f ( z )+~( z ) tanz ]  ~(z)&,  (127) 

- -  n / 2  

(O(£, O, t)= ~o e-~((l -c)/(l +C)) (128) 

with Oo = -O.03(gho/fo), a = (12.74244) 2, gho = lO s m2/s 2, 
fo = 2Q sin(n/4), and 

C= sin O° sin O + c°s O° c°s O c°s ( 2 - u° t - )~°) (129) 

The center of the low is initially located at (20, 0o)= 
(0, n/4). The velocity potential, )~, is zero while the stream 
function is given by 

du uvtan 0 g Oh 
~ - -  f v = F . ,  (116) 

dt a a cos 0 02 

dv uu tan 0 . g Oh 
dt + - - a  ~-a-~ + fu=Fv ,  (117) 

dh h I& OvcosO 1 
dt + ~ -~2 + 00 = F h , 

(118) 

where the height of the mountains h s is taken to be zero and 
the substantial derivative is defined as 

d 0 u g v 0  
dt &+aco-----~Og2 +a gO' (119) 

and the forcing terms are defined as 

d~ fig tan 0 g a~ 
F,  - -  + -  f~, (120) 

dt a a cos 0 02 

0 
~0(2, 0, t) = - f  a~(z) dz + ~(2., 0, t). 

- -  n / 2  

(130) 

The flow is a translating low pressure center superimposed 
on a jet stream which is symmetrical about the equator. 
Figure 5 of [3]  illustrates the initial height field. This field 
exhibits some of the properties of middle level tropospheric 
flow (i.e., a short-wave trough embedded in a westerly jet). 

The analytic expressions for the forcing are presented 
above for momentum. Schemes predicting other variables 
such as vorticity/divergence or stream function/velocity 
potential must be able to accept the forcing in terms of 
momentum as that is what is provided from the 
parameterizations in atmospheric models (see for example 
[33].) Thus solutions should be provided using the momen- 
tum forcing as prescribed. However, for the purpose of com- 
parison with other schemes it may be advantageous to 
specify the forcing analytically in terms of the predicted 
variables if other than momentum. This approach is also 
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allowed for these tests, but if it is chosen, then results with 
momentum forcing should also be presented. 

Tests should be run with u0 = 20 and 40 m/s. 

Error measures. Contour maps of solution and error 
after day 5 on an orthographic projection centered on 
(2c, ~z/4) (2c is the longitude of the center of the cell). The ll, 
12, loo errors of h' and v' should be plotted as a function of 
time. Here h' and v' are the perturbation fields obtained by 
subtracting the background zonal flow 

h ' = h - ~  (131) 

u ' = u - f i  (132) 

v '=  v, (133) 

tion plotted as a function of time sampled daily. Various 
normalized global invariants of the continuous equations 
should also be plotted as a function of time. Define the 
normalized integral 

I[#(2, 0, t)] -113(2, 0, 0)] 
I , ( ~ ( t ) )  - , (135) 

i[~(,~, 0, 0)] 

where the discrete integral ope ra to r / i s  defined as (81). The 
following invariants should be presented: 

mass ( i=  1), 

~=h * ;  (136) 

total energy (i = 2), 

where r~ and/~ are given by (126) and (127), respectively. 
The true solution is modified in the same way for the error 
calculation. The mean zonal component is removed so that 
the error primarily represents that associated with the cell. 
The graphs should include data sampled every time step so 
that any oscillatory behavior can be seen. 

5. Zonal  Flow over an Isolated Mountain 

This case was used by Takacs to study the effect of a 
posteriori methods for conservation of integral invariants 
[27]. It consists of zonal flow as in case 2 impinging on a 
mountain. The wind and height field are as in case 2, with 

= 0, but h0 = 5960 m and Uo = 20 m/sec. The surface or 
mountain height is given by 

hs = hs0(1 - r / R )  (134) 

where hso = 2000 m, R = rr/9, and r 2 = min[R 2, (2 - 2c) 2 + 

The center is taken as 2c = 3rc/2 and 0,. = re/6. As no 
analytical solution is known, a reference solution will be 
provided by a high resolution spectral transform model 
integration. This will be provided as spectral coefficients at 
5-day intervals and a routine to generate point values at 
arbitrary points. Agreement must be found with at least one 
other high resolution solution provided by a different 
numerical scheme in order to have confidence in the error 
measures. As mentioned earlier, an explicit diffusion should 
be added to the equations to maintain a realistic kinetic 
energy spectrum. Details of the coefficients and form chosen 
should be presented. 

Error measures. Contour maps on a rectangular 
latitude/longitude projection (A2 /Ax  = AO/Ay) of the h field 
and error at days 5, 10, and 15. Graphs of the ll ,  12, and lv 
errors of h and v calculated versus the high resolution solu- 

= ½h*  .v + ½g(h (137) 

potential enstrophy (i = 3), 

= 0.5(( + f )2 /h*.  (138) 

The unnormalized integrals of vorticity and divergence 
should be presented since their initial values are zero: 

vorticity (i = 4), 

= (; (139) 

divergence (i = 5), 

= 6. (140) 

6. Rossby -Haurwi t z  Wave 

Rossby-Haurwitz waves are analytic solutions of the 
nonlinear barotropic vorticity equation on the sphere [10]. 
Although they are not analytic solutions of the shallow 
water equations they have been used so frequently for 
meteorological tests that since Phillips' [21] first tests they 
have become de fac to  standard test cases although generally 
with different parameters selected by each investigator. 

The initial velocity field is nondivergent and given by the 
stream function 

= - a2co sin 0 + a2K cos e 0 sin 0 cos R2, (141) 

where co, K, and R are constants. Haurwitz [10] showed 
that this pattern moves from west to east without change of 
shape in a nondivergent barotropic model with angular 
velocity v given by 

R(3 + R) co - 2 0  
v - (142) 

(1 + R)(2 + R) 
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The velocity components are given by 

u = ace cos 0 + aKcos R- 10(R sin 2 0 - cos 2 0) cos R2 

(143) 

v = - a K R  cos R- 1 0 sin 0 sin R2.  (144) 

and the vorticity by 

= 2ce sin 0 - Ksin 0 cos R O(R 2 + 3R + 2) cos R2. (145) 

The height is obtained from the stream function by solving 
the balance equation so the initial tendency of the 
divergence is zero [21]: 

gh = gh o + a2A(O) + a2B(O) cos R2 + a2C(O) cos 2R)~ 

(146) 

A ( 0 ) = 2 ( 2 f 2 + C e ) c o s 2 0 + ~ K  2 cos 2R O[(R+ 1)cos20 

+ ( 2 R Z - R - 2 ) - 2 R  2 cos -2 0] (147) 

2((2 + m) K 
B(O) = (R + 1)(R + 2) c°sR O[(RZ + 2R + 2) 

- (R + 1) z cos 2 03 (148) 

C ( O ) = ¼ K 2 c o s 2 R O [ ( R + l ) c o s 2 0 - ( R + 2 ) ] .  (149) 

In the past the qualitative aspects of the solutions have 
generally been examined. To compliment the qualitative 
aspects we provide a reference solution from a high resolu- 
tion spectral transform model integration. This will be 
provided as daily spectral coefficients and a routine to 
generate point values at an arbitrary point. The parameters 
are o 9 = K = 7 . 8 4 8 × 1 0  6s 1 and h o = 8 × 1 0 3 m .  Only a 
wave number R = 4 is chosen for the initial condition. 
Unstable waves [ 12 ] are not chosen, since slightly different 
perturbations may lead to growth of different unstable 
modes as might be indicated in Kreiss and Oliger [14]. 

Error measures. Contour maps on a rectangular 
latitude/longitude projection (AA/Ax = AO/Ay) of the h field 
and error at days 1, 7, and 14. The ll, 12, l~ errors of h and 
v calculated versus the high resolution solution plotted as a 
function of time sampled daily. The five global invariants 
(Eqs. (136)-(140)) listed with the flow over an isolated 
mountain (case 5) should also be graphed as a function of 
time. 

7. Analyzed 500 mb Height and Wind Field Initial Condi- 
tions 

case, with strong flow over the North Pole, has pointed out 
shortcomings of schemes in the past. A second case is 0000 
G M T  January 16, 1979. This case is characterized initially 
by two cutoff lows. The flow pattern develops into a typical 
blocking situation. It has been studied extensively by 
Bengtsson [2].  The third case is 0000 G M T  January 9, 
1979, which initially has strong zonal flow. The last two 
cases are from the F G G E  case studies selected by W G N E  
and discussed by Baumhefner and Bettge [ 1 ]. The shallow 
water equations should not necessarily be expected to 
predict the atmosphere well in these cases. The variety is 
chosen to illustrate any variability in the characteristics of 
schemes depending on the atmospheric state. 

The initial data are truncated to T63 spectral resolution, 
which includes all scales available in the analyses as 
provided in Trenberth and Olson [29]. The mean height is 
set to 10 kin. Ideally, nonlinear normal mode initialization 
consistent with the scheme being tested should be applied to 
the initial data to prevent gravity waves from contaminating 
the solution. The changes made by the initialization scheme 
should be submitted along with the error summary. 
However, because of the extra work necessary to develop 
the initialization codes, an initialized data set is also 
provided which is obtained via nonlinear normal mode 
initialization with a high resolution spectral transform 
model. Although it may be advantageous to use an 
initialization procedure consistent with the scheme being 
tested, the choice is left to the scheme's proponents. As 
mentioned earlier, an explicit diffusion should be added 
to the equations to maintain a realistic kinetic energy 
spectrum. Details of the coefficients and form chosen should 
be presented. 

Error measures. The "true" or reference solution will be 
obtained initially with the spectral transform method 
applied to the finest resolution possible. Agreement must be 
found between at least two different schemes at high resolu- 
tion to have confidence. The reference solution will be 
provided in terms of spherical harmonic coefficients so that 
it can be reconstituted on any computational grid. The 11, 
12, and l~ errors of h and v should be plotted daily from 
5-day forecasts. In addition, plots on north and south polar 
stereographic projections of the forecast and forecast error 
should be provided for day 1 and day 5. The five global 
invariants (Eqs. (136)-(140)) listed with the flow over an 
isolated mountain (case 5) should also be graphed as a func- 
tion of time. A graph of the height field at every time step at 
the grid point closest to 40N and 105W should be provided 
to indicate any temporal noise or residual gravity waves in 
the forecasts. 

The last case consists of atmospheric initial conditions of 
the 500 mb height and winds from several atmospheric 
states. The first is for 0000 G M T  December 21, 1978, which 
Ritchie [23] used to test his semi-Lagrangian scheme. This 

4. PERFORMANCE BENCHMARK 

To exhibit the performance of a numerical scheme on a 
given computer system, the computer CPU time and 
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storage requirements for a 5-day run of case 2 with ~ = rc/4 
(to avoid most symmetries) should be reported for various 
resolutions. Results from case 2 need only be presented for 
schemes whose computational characteristics are indepen- 
dent of the solution. For other methods such as adaptive or 
iterative ones the results should be presented for all tests. 
The number of time steps taken and the errors in h and v at 
5 days, as in (82)-(84) and (97)-(99) should be given for 
each resolution. Any time step restrictions or special cases 
should be recorded so that the computational effort corre- 
sponding to a climate simulation can be judged. Enough 
data should be provided so that comparisons can be made 
between schemes based on the computational resources 
required to achieve a given level of accuracy. These should 
include the total CPU time required, the number of opera- 
tions required for the calculation, a measure of the sustained 
computational rate in gigaflops, and the data space storage 
required for each resolution. The machine, compiler and 
precision used should also be documented. 

For parallel computers the wall clock time, as measured 
on the host computer, should be reported as well as the 
maximum time spent on any one processor. The maximum 
size of the data space required on any processor should also 
be reported. Execution times for a given resolution with the 
use of increasing numbers of processors should be given to 
indicate how the algorithm scales. The speedup and parallel 
efficiency for each resolution should be given as a function 
of the number of processors. The parallel speedup is defined 
as Sp = T1/Tp, where T1 is the time required to execute the 
sequential algorithm on a single processor and Tp is the 
execution time for the parallel algorithm using p processors. 
The parallel efficiency is given by Ep=Sp/p. These 
measures may require an approximation of T~ due to 
memory constraints in the single processor case. The 
method and assumptions used to approximate T~ should be 
clearly stated. No output or unnecessary computation 
should be performed during the 5-day simulation. 

5. GENERAL COMMENTS 

Ideally, all contouring should be via linear interpolation 
on the original computational grids without smoothing or 
additional interpolation to an intermediate grid in order to 
provide an indication of any noise in the solution. The 
utility of the various tests included in this suite will become 
apparent as more investigators apply their schemes to them. 
We hope investigators will use all the tests and publish in 
refereed journals selected results that illustrate both the 
strengths and weaknesses of the schemes. In-house technical 
reports containing the results from all the tests could 
provide the complete documentation of a scheme. We 
expect the suite will evolve informally with time as 
investigators point out weaknesses in the tests and suggest 

alternatives with arguments as to why they are good test 
cases. Several other cases are currently under consideration 
for inclusion. These consist of Thompson's nonlinear series 
solution to the equations [28] and modons in spherical 
geometry [30]. The latter do not have an analytical solu- 
tion for the shallow water equations and a high resolution 
numerical solution will be required for a reference solution. 
J. C6t6 (personal communication) is developing a test case 
following the recent studies of inertial motion on the sphere 
[18, 20]. This case will complement the pure advection 
case 1 and deal only with the momentum equations. 

The test suite will only become standard to the extent that 
the community finds it useful. This suite is fairly large but 
contains a variety of test cases and error measures. This 
variety is needed in order to provide as much information as 
possible to would-be users so they can evaluate the impor- 
tance of the various trade-offs required in their applications. 
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